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Abstract
In the past, chick discrimination was assumed to be non-existent without virtually
any research invested to check the reality. Models of brood parasitism considered
the benefits of chick rejection small and costs too high; consequently, the nestling
stage was long ignored in studies of host–parasite coevolution. Remarkably, the
majority of recent studies that addressed parasite chick biology did find evidence
for host behaviours that alleviate the costs of parasitism during nestling stage.
Most of the hosts that (apparently) discriminate against parasite chicks are
acceptors of natural parasite eggs; this pattern is in line with the rarer enemy
model. The main impetus for future work is therefore not naively assuming but
empirically checking the (non)-existence of chick discrimination to show how
common is chick discrimination in reality. This will allow to elucidate
mechanisms of chick discrimination, both those that specifically evolved as a
response to past parasitism pressure and those stemming from non-specific general
host life history traits, and factors that facilitate or constrain their evolution.

29.1 Introduction

Life cycles of both brood parasites and hosts develop through a series of stages, from
egg laying, through incubation, hatching, nestling and fledgling periods to indepen-
dence during non-breeding periods. At each stage the interactions involve costs and
benefits for both parties and, consequently, affect overall population and evolution-
ary dynamics of both parasites and hosts (Dawkins and Krebs 1979). Despite the
large and increasing research effort into brood parasite–host systems, we are still far
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from a coherent understanding of the complete host–parasite life cycles. This is
because of an imbalance in research efforts across all life stages: a great majority of
studies have addressed, and still addresses, the incubation stage (egg rejection and
mimicry); few studies have focused on the egg laying and hatching processes and
nestling and fledgling periods.

Here, I focus on the nestling period (Soler 2009), which has been typically
neglected in comparison with the egg stage (Grim 2007a). Recent advances in this
tiny field of study suggest that host–parasite interactions during the nestling stage
may have fundamental effects on parasite–host coevolution.

29.2 Theoretical Explanations

Most historical discussions of chick discrimination, i.e. differential behavioural
response of hosts towards own vs. foreign chicks (e.g. Langmore et al. 2003; Grim
2007b; Shizuka and Lyon 2010), tried to explain its absence (or, at best, rarity),
taking the lack of such host adaptation for granted. Today, all previous explanations
for the absence are invalid because good empirical evidence for various modes of
chick discrimination has accumulated during the last ca. 15 years (Table 29.1). All
previous explanations for the rarity of chick discrimination were reviewed and
refuted with theoretical arguments or empirical evidence (Grim 2006). To avoid
unnecessary duplication, I am not going to repeat the arguments here. If anything,
post-2006 empirical data provide additional support for rejecting traditional
explanations. Here I give just one example.

It has been argued that evicting parasites, like common cuckoos (Cuculus
canorus), eliminate comparative material (host own chicks) which prevents host
chick recognition; this hypothesis was in line (at the time of publication) with chick
discrimination being reported mainly from non-evicting parasite–host systems.
However, there are at least six different cognitive systems that might be employed
as a basis for chick discrimination without material for comparison (see section
“Simultaneous Comparison Constraint” in Grim 2006). All those cognitive
mechanisms are known in birds and work in other social and behavioural contexts;
this rejects the notion that discrimination is impaired by the lack of comparative
cues. I see no theoretical reason why chick discrimination should be an exception.
Indeed, empirical data support this view: the best evidence for chick discrimination
comes from hosts of evicting parasites (Langmore et al. 2003; Fig. 29.1a). In fact, it
was even more often reported from evicting than from non-evicting parasites
(Table 29.1).

The “material for comparison” idea stemmed from findings of early egg discrimi-
nation studies—but there is ample evidence that even foreign egg discrimination is
not limited by the absence of own eggs for comparison (Bán et al. 2013). The
hypothesis of missing comparative material probably reflected a notion that cuckoos
evict immediately after hatching; this notion is wrong because cuckoos start to evict
only when they are 1 or 2 days old (Honza et al. 2007; Grim et al. 2009b). Therefore
hosts do have material for comparison, either eggs (why should a host not assess a
contrast between, e.g. own egg colour and parasite egg skin colour?) or their own
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hatched chicks. At least in some nests, the cuckoo and host chicks coexist for several
days, in some hosts regularly, and even up to fledging (Chap. 16). This provides as
much time (or much longer, in host–parasite mixed broods) as is needed for host
responses to cuckoo eggs (Hanley et al. 2016).

Further, I am going to discuss, chronologically, only potentially viable
explanations (for unviable ones see Grim 2006).

Fig. 29.1 (a) Deserted Horsfield’s bronze cuckoo (Chalcites basalis) chick (3–4 days old) in a
superb fairywren (Malurus cyaneus) nest in Australia (nest and chick moved from original position
to facilitate photography). (b) Deserted common cuckoo (Cuculus canorus) chick (14 days old) in a
reed warbler (Acrocephalus scirpaceus) nest in the Czech Republic. (c) Deserted common cuckoo
chick (17 days old) in a common redstart (Phoenicurus phoenicurus) nest with a deserted host chick
(same age) after other host chicks fledged in Finland. Photo credits: (a) N. Langmore, (b)
O. Mikulica, (c) T. Grim
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29.2.1 Misimprinting Model

Lotem (1993) assumed that hosts imprint on both their eggs and chicks for the
lifetime. Given his model assumptions, he showed that in hosts of evicting parasites,
costs of misimprinting on parasite chicks are higher than benefits of correct imprint-
ing on own chicks. Due to its elegant simplicity, the model was generally accepted as
a good explanation for why hosts do not reject foreign chicks.

Theoretically, the generality of misimprinting model is limited because it may
apply only under special conditions (Planqué et al. 2002; Grim 2006; Britton et al.
2007). The model did not take into account rejection costs and errors and was based
on poorly supported assumptions. Specifically, misimprinting model assumed, with-
out any empirical evidence, that chick recognition is only learned and innate
recognition is improbable. Today, there is good empirical evidence for innate
recognition in various biological contexts (egg, adult, enemy, etc.; Grim 2006),
including chick recognition (Langmore et al. 2003, 2009). Misimprinting model
also assumed, with limited empirical evidence, that egg recognition is based on
imprinting. However, the majority of studies do not support this contention (Soler
et al. 2013b and references therein). Recognition, even innate one, is not strictly
necessary for chick discrimination (Grim et al. 2003; Schuetz 2005a). At the time of
publication, the model was apparently in line with empirical data because chick
discrimination seemed to be more prevalent in non-evicting parasites; today, the
opposite is true: most cases of chick discrimination come from evicting parasites
(Table 29.1).

I suspect that the misimprinting model, although admirable for its parsimony,
might be partly responsible for low research effort on chick discrimination: it took
the absence of chick discrimination for granted and by providing an explanation for
the absence of the phenomenon it apparently made chick discrimination a “closed
case”. This view is in line with the fact that its publication did not elicit any empirical
tests of chick discrimination. Today, both theoretical reasons and empirical data
make it clear that the misimprinting model should no longer be considered a viable
general explanation for the lack or (apparent?) rarity of chick discrimination. In
contrast, alternative models (rarer enemy, strategy blocking) fit empirical data well.

29.2.2 Rarer Enemy Model

The rarer enemy model (Grim 2006) is an extension of the classic verbal model, the
rare enemy effect (Dawkins 1982). Although parasite eggs are rare enemies, parasite
chicks are even rarer enemies. This is primarily because host interactions with chicks
are pre-empted by host removing potential parasite chicks before they hatch (egg
rejection) and also via parasite egg infertility and nest failure due to predation or
inclement weather; even egg acceptors face parasite chicks less often than eggs (this
point has not been considered in any other theoretical model). All these factors
additively decrease effective parasitism rate during the chick stage. The core of the
rarer enemy idea is that these factors prevent parasitism rate at the chick stage to
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reach the threshold that selection pressures must overcome in order to positively
select for chick discrimination (Fig. 1 in Grim 2006). The view that it is hosts
themselves that create low parasitism rate at the chick stage (via egg rejection)
fundamentally differs from alternative explanations. Although the model is “only”
verbal, each step of the suggested coevolutionary dynamics is supported by
published mathematical models (Fig. 1a–f in Grim 2006).

The rarer enemy model explicitly predicted that chick discrimination should
evolve mostly in hosts that are forced to accept parasite eggs from any reason (egg
mimicry, crypsis, shared diet effects on egg colour, phylogenetic and physical
constraints, etc.; Grim 2002, 2005). Novel evidence accumulated after the model
was published (Grim 2006) consistently supported the model (Grim 2011): the most
persuasive evidence for chick discrimination came from pure acceptors of natural
parasitism (Table 29.1). Still, the model predicted coexistence of imperfect egg and
imperfect chick discrimination (Grim 2006). An example of this might be provided
by reed warblers (Acrocephalus scirpaceus) from a population where hosts always
accept cuckoo eggs unless they directly witness the cuckoo during laying (Moksnes
et al. 2000) and sometimes desert cuckoo chicks (Grim et al. 2003; Fig. 29.1b).
Indeed, this population may experience a strong parasitism pressure only recently
(Igic et al. 2012).

The idea can be extended to other stages of the host–parasite arms race. For
example, also successful nest defence pre-empts selection pressure on both egg and
chick rejection: e.g. “sitting on the nest” by yellow warblers (Setophaga petechia)
blocks parasite access to the nest (Hobson and Sealy 1989) and might explain why
these hosts accept foreign eggs. Testing this hypothesis will require data on natural
host–parasite interactions during laying (Moksnes et al. 2000; see Chap. 18).
Dummy experiments are useful for other purposes, e.g. enemy recognition studies
(Hobson and Sealy 1989), but useless in this respect because they cannot determine
if the parasite female is deterred by hosts or not. Further, a trade-off between earlier
and later defences can work not only at the host species/population level
(as discussed so far) but at individual level too. Here, the rarer enemy effect predicts
that females that are egg rejecters should be more likely chick acceptors, whereas
egg acceptors should be more chick discriminating; note that female is the sex
responsible for discrimination of both eggs and chicks in most birds (Davies 2000;
Langmore et al. 2003).

29.2.3 Strategy Blocking Model

The mathematical model (Britton et al. 2007; see also Planqué et al. 2002 for a less
general version of the model) is based on an idea that adaptiveness of a particular
strategy is context-dependent, i.e. its fitness is affected by the frequency of other
strategies in “defence portfolios”. Britton et al. (2007) showed that a strategy might
be adaptive on its own but can get prevented (“blocked”) by another (“blocking”)
strategy. For example, the model suggested that a population of naive hosts
(i.e. non-defending acceptors of both egg and chick parasites) can be invaded by
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egg rejecter strategy but such a population of egg rejecters would not be later
invaded by either chick rejecters or all rejecters (i.e. rejecters of both eggs and
chicks). The crucial and contra-intuitive insight is that a mixed strategy of rejecting
both eggs and chicks is maladaptive and cannot invade a population of either egg
rejecters or chick rejecters (at least given the model structure).

Strategy blocking is similar to rarer enemy effect but there are important
differences between the two (Table 29.2). Essentially, the two models can be seen
as a one-sided (rarer enemy) vs. double-sided (strategy blocking) trade-off between
strategies within a defence portfolio. The two models are clearly different from other
models both conceptually and in their predictions (e.g. Lotem 1993; Redondo 1993;
Lawes and Marthews 2003; Sato et al. 2010a). Future modelling and empirical
studies are needed to clarify which conditions best explain patterns of chick discrim-
ination observed in nature.

29.2.4 Egg Dilution Model

The final published theoretical explanation of conditions necessary for the evolution
of chick discrimination takes into account multiple parasitism. Sato et al. (2010a)
suggested that hosts in populations where multiple parasitism is common may
adaptively accept a first-laid parasite egg (even though they can discriminate the
foreign egg) and delay the rejection of the parasite into the chick period. The
rationale is that not rejecting the first parasite egg increases the total clutch size
and the second-laying parasite female might remove the egg of the first female,
effectively helping hosts with rejecting the first parasite. However, the assumptions
of the model are unlikely to occur empirically in most brood parasite–host systems,
severally limiting its applicability and making it an unlikely general explanation for
chick discrimination patterns (Grim 2017).

Table 29.2 Differences between rarer enemy and strategy blocking models. See the original
studies for rationales

Prediction
Rarer enemy
(Grim 2006)

Strategy blocking
(Britton et al. 2007)

Egg rejection is blocked
by chick rejection

No Yes

Chick rejection can
coexist with egg
rejection

Yes No

Patterns of host
defences under natural
conditions

Only acceptors of natural (but not necessarily
experimental) parasite eggs should show
chick discrimination

No explicit
prediction
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29.3 Empirical Evidence

Australian hosts, superb fairywrens (Malurus cyaneus), desert parasite chicks
(Langmore et al. 2003) and fine-tune their innate chick rejection via learning
(Langmore et al. 2009). This has resulted in an evolution of admirable level of
both acoustic (Langmore et al. 2008) and visual mimicry (Langmore et al. 2011).
The last study found beautiful similarity between chicks of several host–parasite
pairs, suggesting that chick discrimination may be much more widespread than
thought previously (Table 29.1).

Reed warblers desert some nests where the brood, be it a cuckoo (Grim et al.
2003) or own chicks (in nests with experimentally prolonged nestling period), needs
longer care than host own brood under natural conditions (Grim 2007b). Such
preprogrammed parental care represents “discrimination without recognition”
because warblers do not recognize their vs. foreign chicks (Davies 2000) yet are
able to get rid off of the parasite. As argued by Soler et al. (2013a), deserting cuckoo
nestlings is unlikely a by-product of host fledgling process: altricial species decrease
feeding to force nestlings to leave the nest but this “forcing” behaviour does not
result in chick death.

Recently, chick discrimination by ejection (i.e. host parent grasped a cuckoo
chick and removed it from its nest) was video-recorded in three gerygone species
(Table 29.1). This provides direct evidence that physical constraints are impotent as
an explanation for acceptance of foreign chicks (as already supported by indirect
evidence: Grim 2006). Additionally, there is an older observational and experimental
evidence of foreign chick discrimination from another gerygone species (McLean
and Rhodes 1991). A closely related thornbill (Acanthiza) host is parasitized by
apparently mimetic cuckoo chicks (Table 29.1). This phylogenetic distribution
(Nyári and Joseph 2012) suggests that chick discrimination may represent an
ancestral trait in the Acanthizidae; clearly, other related species in this clade deserve
more attention. The same holds for various Malurus fairywrens (Langmore et al.
2003, 2011; Colombelli-Négrel et al. 2016).

Some of these cases (Table 29.1) unambiguously represent chick rejection, while
others may be more parsimoniously explained as by-products of host general life
history traits, namely, indigestible food, nest design, etc. (Grim et al. 2011). More
important than the origin of (apparent) chick discrimination is its effects on parasite–
host coevolutionary dynamics: for example, fosterer non-willingness to feed a chick
with phenotype different from host chicks effectively results in chick discrimination
(lowered parasite fitness, improved host fitness: this is certain) no matter what was
the evolutionary origin of that behaviour (host–parasite coevolution, parent–off-
spring conflict, sibling competition, exploitation of preexisting preferences, etc.:
this is uncertain). Thus, even general life history traits (Grim et al. 2011) might
contribute to host avoidance or diminishing of misplaced investment into alien
chicks (Soler 2008; Yang et al. 2013; Grim et al. 2017).

Despite increasing empirical evidence, there is completely untapped cornucopia
of potentially relevant study systems. These include the many introduced host
populations that were typically released from parasite pressures (reviewed in Grim
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and Stokke 2016). Such efforts will allow to study phylogenetic patterns of host
responses to foreign chicks (Wang and Kimball 2012), their covariation with other
host traits (Trnka and Grim 2014), and determining conditions which favour or
constrain the evolution of chick discrimination (Britton et al. 2007). Empirical
studies are fundamental, including metareplication, i.e. repeating the same study
design across phylogeny, space and time (Grim et al. 2011; Grim and Stokke 2016).
For example, Soler et al. (2013a) replicated the study of Grim (2007b) and found no
evidence for the preprogrammed parental care in their model species. Empirical
studies at nestling stage should be integrated with studies of all other stages of
parasite and host life cycles: ignoring a life cycle stage can produce wrong
conclusions, e.g. highly biased fitness estimates (Chap. 16). Comprehensive “all
stages” approach was attempted rarely (Grim et al. 2011; Li et al. 2016; Chap. 16)
and never really satisfactorily so far.

29.4 Constraints on Our Understanding of Host Defences

Understanding of chick discrimination has been hindered by both inappropriate
methods in empirical research and prejudices in theoretical considerations. For the
development of this field, it is essential that these errors are well understood and
avoided in the future.

29.4.1 Non-experimental Data

An observation that hosts accept natural parasite chicks does not mean the host does
not possess chick rejection abilities. Just like egg mimicry forces egg rejecters to
accept (Igic et al. 2012), chick mimicry forces chick rejecters to accept (Langmore
et al. 2011). Observations are inconclusive and cannot be used as evidence for the
absence of chick discrimination—this flawed way of reasoning was standard in the
past. The sole way to discover whether a host shows chick discrimination is experi-
mental, either cross-fostering of various chicks with divergent phenotypes (Grim and
Samaš 2016) or manipulation of host and parasite phenotypes (Redondo 1993).

An observation that parasite chicks are similar to host ones does not necessarily
imply that chicks are mimetic. Host progeny (eggs, nestlings, fledglings) may
resemble parasite progeny from various reasons other than mimicry (Grim 2005).
Recent common descent of host and parasite will likely create a superficial—and
flawed—impression of mimicry and indirectly of discrimination. This highlights the
crucial importance of experiments, especially in the cases of mere “Phenotypic
similarity” (Table 29.1). For example, for half a century at least (Voipio 1953), the
rufous morph of the common cuckoo female was assumed to mimic falcons (Falco
spp.). However, a closer examination of plumage patterns and cues known to be used
by hosts for enemy recognition casts doubts on the hypothesis. Indeed, experimental
data reject it (Trnka et al. 2015). This case warns us to infer mimicry from mere
similarity, i.e. without experimental manipulations (Grim 2013).
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Parasite chicks can die very soon after hatching and may easily go undetected
(Delhey et al. 2011). Parasite chicks can also perish shortly before (Grim et al. 2003;
Fig. 29.1c) or even after fledging (De Mársico et al. 2012); such cases might easily
by misinterpreted as “parasite successful” because avian ecologists often use artifi-
cial cut-off points to score nest fates before fledging.

29.4.2 Preferential Feeding of Super-Chicks

If we adopt a view that parents always prefer larger, higher quality or more
vigorously begging chicks (host exploitation hypothesis: Redondo 1993; see also
Tanaka and Ueda 2005), then cuckoo chick discrimination will seem impossible—a
parasite chick is almost always larger immediately after the emergence from the egg
and begs more than host chicks do (Redondo 1993). What are the consequences of
such constrained assumptions? Consistent parental/fosterer preference for a larger
chick inevitably leads to ever-increasing discrepancy between the size of the largest
chick (fed more and more) and the smaller chick (fed less and less); such a positive
feedback leads to brood reduction (starvation or even death of smaller chicks). Even
without any empirical data, this scenario seems unlikely to apply generally. Indeed,
only some birds prefer to feed larger chicks, creating size asymmetries and leading to
brood reduction (brood reducers sensu Soler 2002), whereas others prefer an egali-
tarian distribution of food, creating evenly sized broods and avoiding brood reduc-
tion (clutch adjusters sensu Soler 2002). The common cuckoo has specialized in
parasitizing “clutch adjusters” species, and therefore cuckoo chicks need to be alone
in the host nest, which makes egg eviction a compulsory strategy (Soler 2002; Grim
et al. 2009a; Chap. 16).

29.4.3 Potential Cues for Chick Discrimination

Altricial chicks show low variation overall, and parents recognize them via their
signals of need and quality (begging), creating a “blind alley” situation for the
evolution of chick discrimination (Redondo 1993). I have refuted this argument
previously (Grim 2006). Since then, a large body of evidence accumulated, showing
that cues for potential chick discrimination are indeed more varied than realized
previously (Table 29.3) and are present for the whole time after the parasite emerges
from the egg, from hatchlings, through nestlings, to fledglings (for the last stage, see
Chap. 30 and Tyller et al. 2018). Even for conspecific chicks, there is evidence of
individual-level cues and recognition based on such fine-scale cues, in both parasitic
and non-parasitic taxa (Kilner 2006; Shizuka and Lyon 2010, 2011; Levréro et al.
2009). For example, juvenile gapes, the skin, and feathers reflect UV-part of the light
spectrum at least in some passerine nestlings and fledglings, and parents use these
signals to adjust their provisioning (Tanner and Richner 2008 and references
therein).
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29.4.4 Adaptiveness of Late Chick Discrimination

What is the benefit of late chick desertion for the host that has already lost its own
progeny? Previous mistaken investment does not imply that additional investment is
adaptive. What matters is future benefits, regardless of previous (“sunk”) costs (see
the concept of “Concorde fallacy”: Dawkins and Carlisle 1976). This applies not
only to late chick discrimination (Grim et al. 2003) but also to even later fledgling
discrimination (De Mársico et al. 2012; Soler et al. 2014). Mistakenly invested costs
are continuously increasing every single day the host cares for foreign nestlings
(including conspecific nestlings: Shizuka and Lyon 2010; Samas et al. 2014).
Therefore every single day the host avoids such care adds to the host’s fitness.

Concluding Remarks and Future Directions
To move the field forward, it is now essential to focus on discovering more
chick discrimination systems and then build theoretical models that could be
informed by quantitative estimates of empirically determined costs and
benefits. Both observational and experimental approaches will be necessary,
including manipulation of chick phenotypic traits, cross-fostering of parasites

(continued)

Table 29.3 Diversity of potential chick discrimination cues, exemplified by the common cuckoo

Cue Host Parasite Reference

Brood size Several chicks Single chick Anderson and Hauber (2007)

Body size Normal Larger Wyllie (1981)

Colour
Skin Normal (Different) Wyllie (1981)

Gape Normal (Different) Noble et al. (1999)

Natal down (Present) Absent Harrison (2002)

Plumage Normal Different Voipio (1953)

Sound
Begging calls Normal (Different) Butchart et al. (2003)

Host absent vocalizations Absent Present Šicha et al. (2007)

Behaviour
Eviction Absent Present Anderson et al. (2009)

Wing-shaking Symmetrical Asymmetrical Grim (2008)

Smell
Skin smell Normal ? No studies yet

Repulsive secretions Absent Present Trnka et al. (2016)

Demands
Length of care Normal Protracted Grim (2007b)

Intensity of care Normal Elevated Grim et al. (2003)

“Normal” refers to non-parasitized host nests. Parentheses denote traits when the cuckoo chick is
different from host chicks in some hosts but not in others
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and both conspecific and heterospecific chicks as controls. Laboratory studies
might be important too but should be validated by experiments under natural
conditions to confirm that laboratory results are not biased due to artificial
environment in captivity.
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